
Journal of Statistical Physics, Vol. 128, No. 4, August 2007 ( C© 2007 )
DOI: 10.1007/s10955-007-9338-5

Random Classical Fidelity
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We introduce a random perturbed version of the classical fidelity and we show that it
converges with the same rate of decay of correlations, but not uniformly in the noise.
This makes the classical fidelity unstable in the zero-noise limit.
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1. INTRODUCTION

A recent series of papers, (4,5,9) addresses the question of computing the classical
fidelity for chaotic systems. They presented qualitative arguments and numerical
evidences in favor of the fact that, for some dynamical systems, classical fidelity
decays exponentially with the same rate as for correlations functions. The purpose
of this note is to provide a rigorous mathematical proof of such a conjecture for a
random perturbed version of the classical fidelity.

We first remind that classical fidelity is the classical counterpart of quantum
fidelity which is, roughly speaking, a measure of the stability of quantum motion.
Let us suppose that |ψ〉 is an initial quantum state which evolves forward up to
time t under the Hamiltonian H0 and then backward for the same time t under
the perturbed Hamiltonian Hε = H0 + εV where V is a potential. The overlap of
the initial state with its image ei Hε t e−i H0t |ψ〉 is quantified by the quantum fidelity
defined as:

fq (t) = |〈ψ |ei Hε t e−i H0t |ψ〉|2 (1)
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The accuracy to which the initial quantum state is recovered is also called the
Loschmidt echo. (5,11,17)

A huge physical literature has been devoted to compute the quantum fidelity;
in particular it has been shown that, under some restrictions, fq (t) decays expo-
nentially with a rate given by the classical Lyapunov exponent (Ref. 5 and refs.
therein). The classical analogue of (1) is simply defined by replacing the Hamil-
tonian with the evolution (Koopmann) operator of maps which preserve some
invariant measures (see next section). It would be interesting to understand if the
asymptotic decay of the classical fidelity takes place with the same exponent or,
alternatively, at what time scale the quantum decay shares the same behavior of
the classical one. These are among the major motivations to study the classical
fidelity.

As we said above, there are numerical evidences that the decay of classical
fidelity is ruled by the usual decay of correlations for smooth observables and
that this decay takes place after a time t which is of order log(ε−1), where ε is
the strength of the perturbation. Notice that after this transient time, the rate of
decay turns out to be independent of ε. The numerical computations have been
performed on invertible maps, possibly with singularities, preserving Lebesgue
measure. In order to prove rigorously the preceding results for a wide class of
dynamical systems, it will be useful to consider, instead of a single perturbed
map, a random perturbation of the original system. In fact, in the case of a single
perturbed map, the classical fidelity will not generally converge when time goes to
infinity, as we will show on a very simple example in the Appendix.4 The evolution
operator will be therefore replaced by a random evolution operator. The advantage
of this definition is twofold. First we can prove that the random fidelity has a limit
when t → +∞ and the limit value is correctly identified. Second, the rate of decay
towards this limit value is the same as for correlations but it is modulated by a factor
of type ε−α (so far it was simply ε−1), where α depends on the class of observable
under consideration. Under the additional assumption that the random dynamical
system is stochastically stable, we will show an additional result, namely that the
limit value of the fidelity performed by first taking t → +∞ followed by ε → 0 is
not the same if we interchange the order of the limits. We call this effect stochastic
instability of classical fidelity, since it shows that the irreversibility which is present
for ε > 0 (echo effect), still persist in the zero-noise limit. We finally point out that
the computation of classical fidelity in presence of noise has been studied (notably
in Ref. 5) and it shares the same properties as for a single perturbed map. We
will present in this paper two different ways to perturb a dynamical system: the
first consists in perturbing the evolution operator by replacing the dynamics with

4 Our counterexample concerns the algebraic automorphism of the torus, perturbed with an additive
noise. Still for the same map, but perturbed in a different manner, the limit defining the classical
fidelity seems to exist, at least numerically (5); see also our examples 4 in Sec. 3
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a suitable Markov chain, while in the other method the orbit of a point is replaced
by the random composition of maps close to the unperturbed one. We will show
in the last section how to establish the equivalence of the two approaches in a few
settings.

2. RANDOM FIDELITY

In order to mimic the physical situations where the classical fidelity has been
studied, even in connection with its quantum counterpart, we will restrict ourselves
to dynamical systems defined on compact Riemannian manifolds X equipped with
the Riemannian volume (Lebesgue measure) m. We consider then a measurable
(with respect to the Borel σ -algebra β) map T :X → X . For the moment we do
not quote in detail the regularity properties of T ; instead we list the requirements
the system should verify for our results to hold. Later on we will provide several
explicit examples satisfying our assumptions.

The classical version of (1) is stated in Refs. 5, 14, as:

fc(n) =
∫

X
U n

0 ρ(x) U n
ε ρ(x) dm(x) (2)

where U0 and Uε denote respectively the evolution (Koopmann) operator associ-
ated to T and to Tε, where Tε is close to T (in some topology):

U0ρ(x) = ρ(T x); Uερ(x) = ρ(Tεx). (3)

Indeed, suppose at first that the map T is invertible. Then the classical ana-
logue of (1) would be:

∫
X ρ(x)(U−n

0 U n
ε )ρ(x) dm(x), that is one first evolves ρ for

a time n by the dynamics Tε and then backward by the dynamics T . If m is T in-
variant, the preceding integral reduces immediately to (2). In general the Lebesgue
measure is not invariant, but it converges to some invariant measure in the limit
n → ∞, see assumption (H1), thus the two definition coincide asymptotically. Of
course, U−1

0 does not have much sense in the non invertible case, yet formula (2)
makes perfect sense so it is natural to use it a definition of classical fidelity.

We will choose the density ρ as a C1 function on X ; moreover we will take
m normalized on X : m(X ) = 1. As mentioned in the introduction, instead of a
single perturbed map Tε, we will consider a random perturbation of T , that is a
family (X ε

n )n≥0 of Markov chains whose transition probabilities {Pε(· | x), x ∈ X}
converge uniformly to δT (x) as ε → 0. We now state carefully our assumptions:

(H1) The map T admits an invariant measure µ which is the weak∗-limit of
the Lebesgue measure m, which means,

∫
X

ϕ dµ = lim
n→+∞

∫
X

ϕ(T n x) dm for all ϕ ∈ C0(X )
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We assume that the measure µ is ergodic and exponentially mixing on the space of
C1 function on X and with respect to two norms which for the moment we simply
denote with ‖·‖1 and ‖·‖2∣∣∣∣

∫
X

ψ1(T n x)ψ2(x) dm(x) −
∫

X
ψ1 dµ

∫
X

ψ2 dm

∣∣∣∣ ≤Cλ−n ‖ψ1‖1 ‖ψ2‖2 (4)

where C > 0 and λ > 1 are determined only by the map T . We stress the fact that
the 1-norm ‖ · ‖1 refers to the function ψ1 which is composed with T , while the
2-norm is computed on ψ2. One could choose stronger equal norms, of course,
but this would yield weaker estimates, with respect to the noise parameter ε, of the
2-norm of the function (of z) qε(T y, z) and of the 2-norm of the function (of x)
qε(T x, y), qε(x, y) being defined in the next assumption. We will see in the proof
of Theorem 1 that the upper bounds of the 2-norms of qε will give the dependence
over ε which modulates the exponential decay of the fidelity. This will lead us to
use norms as optimal as possible in the examples that we will present later on.

Let us consider on the measure space (X, β) a family of Markov chains
(X ε

n )n≥0 with transition probabilities:

P
(
X ε

n+1 ∈ A |X ε
n = z

) =
∫

A
qε(T z, y) dm(y) (5)

where A ∈ β,X ε
0 can have any probability distribution and the measurable function

qε: X × X → R
+, ε ∈ (0, 1] is chosen in such a way that:

qε(x, y) = 0 if d(x, y) > ε (6)∫
X

qε(x, y) dm(y) = 1 for all x ∈ X (7)

A typical example of such a kernel, (7) which we will adopt in the following, is

qε(x, y) = ε−d q̄(ε−1(y − x)) (8)

where q̄ is nonnegative and continuously differentiable, supp(q̄) ⊂ {ξ ∈ R
d : |ξ | ≤

1}, ∫
q̄(ξ ) dξ = 1, inf{q̄(ξ ): |ξ | ≤ 1

2 } > 0 and finally d is the dimension of the
manifold X .

(H2) There exists a norm (identified with ‖·‖2), a constant c (depending
eventually on the function q) and a real positive exponent α (depending only on
the map T ) such that:

sup
y∈X

‖qε(T y, ·)‖2 ≤ cε−α ; sup
z∈X

‖qε(T (·), z)‖2 ≤ cε−α. (9)

Let us now choose T continuous; then by the compactness of X and the choice (6)
of the transition probabilities, our Markov chain admits an absolutely continuous
stationary measure µε namely a probability measure over (X, β) which verifies
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for all g ∈ C0(X );5

∫
X

g(x)dµε(x) =
∫

X

∫
X

qε(T x, y)g(y) dµε(x) dm(y) (10)

Notice that (10) can be equivalently written as:

µε(A) =
∫

X
(Tε1A)(x) dµε(x) (11)

where A ∈ β, 1A is the indicator function of the set A and Tε is the operator defined
on L∞(X ) by:

(Tεg)(x) =
∫

X
qε(T x, y)g(y) dm(y) (12)

This operator will play an important role in the following: it is the random version
of the Koopmann operator (Ug)(x) = g(T x). It simply replaces the deterministic
value g(T x) with the averaged value of g on a small ball of radius ε around T x .
We are now ready to state our third assumption:

(H3) The map T admits a kernel family qε for which µε is the only absolutely
continuous stationary measure (eventually for ε small) and we have the following
rate of decay of correlations for the Markov process (X ε

n , µε):∣∣∣∣
∫

X
T n

ε ψ1(x)ψ2(x) dm(x) −
∫

X
ψ1 dµε

∫
X

ψ2 dm

∣∣∣∣ ≤Cλ−n ‖ψ1‖1 ‖ψ2‖2 (13)

where C , λ and the norms 1 and 2 are the same as in (5).
We also consider another stronger property of the process (X ε

n , µε) namely
its weak convergence towards (T, µ).

(H4) We suppose that the system (T, µ) is stochastically stable, in the sense
that µε tends to µ weakly as ε → 0.

We finally introduce our definition of the classical fidelity which replaces (2)
and is given in terms of the prescriptions (H1) to (H3).

Definition 1 (Random classical fidelity). Let us suppose T is a Borel measurable
map from the compact Riemannian manifold X into itself, and let m be the
probability Riemannian measure on X . Let Tε be the random evolution operator
defined in (13) and ρ ∈ C1(X ). We define the classical fidelity as:

Fε
c (n) =

∫
X

ρ(T n x)(T n
ε ρ)(x) dm(x) (14)

5 We would like to point out that in the examples 3 and 4 of Sec. 3, the map T is not anymore continuous;
nevertheless the existence of an absolutely continuous stationary measure can be proved with other
arguments (3,10)
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We will say that a system enjoy classical fidelity if Fε
n (n) − ∫

ρdµ
∫

ρdµε tend
to zero as n tends to infinity.

We now state our main result:

Theorem 1. Let us suppose that the map T introduced in the preceding definition
verifies the assumptions (H1) to (H3). Then there exists C > 0:

∣∣∣∣Fε
c (n) −

∫
X

ρ dµ

∫
X

ρ dµε

∣∣∣∣ ≤ Cε−αλ−n ‖ρ‖1 ‖ρ‖C0 . (15)

Remark 1.

1. The theorem shows that the limit value of the classical fidelity involves the
stationary measure µε. Moreover the error term is not uniform in ε and this
error begins to be negligible after a time n of order log ε−α/ log λ. This effect
has been effectively observed in Ref. 5, see also the appendix.6

2. The presence of ε in the limit value of Fε
c (n) when n → ∞, or equivalently,

the non-uniformity in ε of the error term, have an interesting consequence if
we assume (H4), namely the stochastic stability of (T, µ). We first observe
that in the absence of noise the correlation integral F0

c (n) converges towards∫
X ρ2 dµ:

lim
n→∞ lim

ε→0
Fε

c (n) =
∫

X
ρ2 dµ (16)

Instead:

lim
ε→0

lim
n→∞ Fε

c (n) =
(∫

X
ρ dµ

)2

(17)

and the two limits (16) and (17) in general will differ. We could interpret
this fact by saying that the classical fidelity is not stochastically stable. The
zero-noise situation: limn→∞ F0

c (n) is not recovered if we first play the dy-
namics for n → ∞ and then we send the perturbation to zero. The memory
is not destroyed when the noise is turned off after the evolution of the sys-
tem and this is a sort of irreversibility of our random version of the classical
fidelity.

6 Of course that above estimate is relevant only for times longer than log ε−α/ log λ, since for shorter
time it gives a rather large bound while the quantity under consideration is trivially bounded by
2‖ρ‖2∞.
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Proof of the Theorem:
Let us define gε,y(x) = qε(T x, y) and φε,y(z) = qε(T y, z) and notice that (we

will equivalently denote the Lebesgue measure with dm(x) and dx):∫
X

(ρ ◦ T n(x))T n
ε ρ(x) dx

=
∫

X
ρ ◦ T n(x)

(
Tε ◦ Tε ◦ T n−2

ε

)
ρ(x) dm(x)

=
∫

X3

ρ ◦ T n(x)qε(T x, y)qε(T y, z)T n−2
ε ρ(z) dxdydz

=
∫

X
dy

[∫
X

ρ ◦ T n(x)gε,y(x) dx

] [∫
X

φε,y(z)T n−2
ε ρ(z) dz

]

Let’s then define for n ≥ 1:

�n =
∥∥∥∥
∫

X
ρ ◦ T n(x)gε,y(x) dx −

∫
X

gε,y(x) dx

∫
X

ρ dµ

∥∥∥∥
C0

�ε,n =
∥∥∥∥
∫

X
φε,y(z)T n−2

ε ρ(z) dz −
∫

X
φε,y(x) dx

∫
X

ρ dµε

∥∥∥∥
C0

The mixing properties of µ with respect to T and of µε with respect to Tε as we
stated in assumptions (H1) and (H3), imply the following decay of correlations
functions:

�n ≤ Cλ−n‖ρ‖1‖gε,y‖2 ≤ Cλ−n‖ρ‖1 ε−α

�ε,n ≤ Cλ−n‖ρ‖1‖φε,y‖2 ≤ Cλ−n‖ρ‖1 ε−α

where we use the same symbol C to denote possibly different constants depending
solely on the map T . Moreover (using

∫
M φε,y(z)dz = 1), we can compute:∣∣∣∣

∫
X

ρ ◦ T n(x) T n
ε ρ(x) dx −

∫
X

ρ dµ

∫
X

ρ dµε

∣∣∣∣
≤

∫
X

dy�n

∣∣∣∣
∫

X
φε,y(z)T n−2

ε ρ(z) dz

∣∣∣∣ +
∫

X
dy�ε,n−2

∣∣∣∣
∫

X
ρ dµ

∫
X

gε,y(z) dz

∣∣∣∣
≤ Cλ−n+2ε−α ‖ρ‖1 ‖ρ‖C0 + Cλ−n+2ε−α ‖ρ‖1 ‖ρ‖C0

since
∫

X gε,y(z) dz ≤ C ,
∫

X φε,y(z) dz ≤ C and ‖T n
ε ρ‖C0 ≤ C‖ρ‖C0 for all n. �

3. EXAMPLES

In this section we quote some dynamical systems of physical interest which fit
our assumptions and to which we can apply our theorem on the decay of classical
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fidelity. We remark that the measure µ which we consider as the weak∗-limit of the
Lebesgue measure, is usually called the SRB or physical measure. For diffeomor-
phisms, eventually with singularities, it has also two additional properties: first,
it has absolutely continuous conditional measures along the unstable foliations;
second it can be reconstructed by Birkhoff sums starting from initial points chosen
in a basin of positive Lebesgue measure.

For locally (eventually non-uniformly) expanding maps, µ is absolutely con-
tinuous with respect to the Lebesgue measure.

1. Anosov diffeomorphisms
The exponential decay of correlations for the SRB measure is a classical result;
see for instance. (8) Yet, the optimal choice of the norms is a subtle matter. For
simplicity we adopt the choice made in Ref. 7 where one can also find the
decay of correlations for the stationary measure µε constructed with the kernel
family qε. With such a choice, a direct computation from formula (2.1.7) of
Ref. 7 yields

‖h‖2 ≤ ‖h‖L1 + ‖Duh‖L1

‖h‖1 ≤ ‖h‖C1 ,

where Du is the differential restricted to the unstable directions. Accordingly,
‖gε‖2 + ‖φε‖2 ≤ Cε−1. Hence, in this case, α = 1.

2. Uniformly hyperbolic attractors
In this case we can refer to the work of Viana(18) although the norms are proba-
bly not the optimal ones. Better estimates could probably be obtained by using
the recent work of Ref. 2 in conjunction with the perturbation theory of Ref. 12.
Here we content ourselves with the bound ‖h‖1 + ‖h‖2 ≤ C‖h‖C1 which fol-
lows from formula (4.29) of Ref. 18. Accordingly we have the (unsatisfactory
and almost certainly non optimal) bound α ≤ d + 1.

3. Piecewise expanding maps of the interval
For continuous piecewise C2 expanding maps of the interval without periodic
turning points, Baladi and Young(3) have proved the exponential decay of
correlations and the stochastic stability of absolutely continuous stationary
measures constructed with the convolution kernel:

qε(x, y) = θε(y − T x) θε ≥ 0; supp θε ⊂ [−ε; +ε] and
∫

θεdm = 1

In this case ‖h‖2 = ‖h‖BV , ‖h‖1 = ‖h‖L1 , thus α = 1.
Similar results can be obtained for piecewise expanding C2 maps with

derivative uniformly larger than 2, see Ref. 16.
4. Uniformly hyperbolic maps with singularities (in two dimensions) This is

an interesting situation since it covers the numerical simulation produced by
Casati et al. (5) In fact the latter authors perturbed the linear automorphism of the
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torus by keeping the Lebesgue measure invariant. In this way the perturbations
become singular in the sense that the perturbed maps are discontinuous.

This case has been rigorously investigated by Ref. 10. Unfortunately, the
norms are a bit unusual, here we will just state the minimum and refer to Ref. 10
for more details.

The basic object is a collection � of smooth curves close to the stable
direction. Given such curves we have (see Ref. 10 Eqs. (2.3), (2.4)):

‖h‖2 ≤ sup
W∈�

∫
W

|Dh| +
∫

W
|h|.

Thus we have7

‖gε‖2 + ‖φε‖2 ≤ Cε−2.

That is α ≤ 2. Note that the numerically predicted bound is α = 1. In view
of the smooth multidimensional case and of the one dimensional piecewise
smooth case above we conjecture that α = 1 is indeed the correct value and
the present one (α = 2) is a byproduct of our method of proof.

4. PERTURBATION WITH RANDOM MAPS

The random process that we used in Sec. 2 could be realized, in contrast to (5),
as the composition of random maps (see Refs. 1, 13, 15 for more details). In this
section we will briefly comment on the relation between this two different ways to
realize a random perturbation. We start the discussion by a precise description of
the random maps alternative.

Let (ωk)k∈N be a sequence of i.i.d. random variables with values in the
interval �ε = (−ε, ε) and with distribution θε. We then associate continuously to
each ω ∈ �ε a map Tω with T0 = T and we define the transition probabilities (5)
P(·|z) on the σ -algebra β in such a way that:

P(A | z) = θε(ω; Tωz ∈ A) (18)

7 Let us compute, for example, ‖gε‖2. For W ∈ �

∫
W

|gε| =
∫

W
qε(T x, y)dx =

∫
T −1W

|qε(x, y)|Jx T dx ≤ Cε−1

where J T is the Jacobian of the change of coordinates and the last inequality follows from the fact
that we integrate along a curve instead than on all the space. Analogously,

∫
W

|Dgε| = ε−1
∫

W
|DT ∇qε(T x, y)|dx = ε−1

∫
T −1W

|DT ∇qε(x, y)|Jx T dx ≤ Cε−2.

From which the estimate in example 4 follows.
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for A ∈ β. The closeness of the Tω to T will be made explicit in the concrete
examples that we are giving below. In this setting the random evolution operator
is replaced by the following one:

(Uεg)(x) =
∫

�ε

g(Tωx) dθε(ω) (19)

for any g ∈ L∞(X ), and the stationary measure µε should verify for each h ∈
C0(X )

∫
hdµε =

∫
X

∫
�ε

(h ◦ Tω)(x) dθε(ω) dµε(x) =
∫

X
(Uεh)(x) dµε(x) (20)

The iterations of the unperturbed map, T n(x), x ∈ X , are thus replaced by the
composition of random maps Tωn ◦ · · · ◦ Tω1 , ωi ∈ �ε; x ∈ X . One is therefore
tempted to define a random version of the fidelity by setting (compare with (2)):

∫
ρ(T n x)ρ

(
Tωn ◦ · · · ◦ Tω1

)
(x) dm(x)

for a given realization ω = (ω1, ω2, . . .) ∈ �N

ε . Instead of doing that, we will take
the average over all realizations, which produces the annealed version of the
preceding correlation integral and we set the new version of the classical fidelity
as:

F̃ε
c (n) =

∫
X

∫
�ε

ρ(T n x)ρ
(
Tωn ◦ · · · ◦ Tω1

)
(x)dθN

ε (ω) dm(x)

In terms of the random evolution operator Uε the above integral can be simply
written as

F̃ε
c (n) =

∫
X

ρ(T n x)
(
U n

ε ρ
)
(x) dm(x)

which is formally similar to the random classical fidelity defined in (14). The
advantage of this formula is that it is physically simpler to perturb the map T
by randomly composing sequence of maps close to T . A very established theory
exists for this kind of random perturbations and all the examples of Sec. 3 fit as
well with it. We now show that in many cases the random evolution operator Tε can
be obtained from Uε by a suitable choice of the probability measure θε and of the
random maps Tω. To make the argument as simple as possible, let us suppose that
X = T

m , the m-dimensional torus, and define the additive noise: Tω = T (x) − ω

mod T
m , where ω ∈ T

m and then take θε absolutely continuous with respect to
the Lebesgue measure dω over T

m and with a continuously differentiable density
hε with support contained in the square [−ε, ε]m :

∫
dθε = ∫

hε(ω)dω = 1. A
simple change of variables on the m-dimensional torus immediately gives, for any
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g ∈ L∞(dω):

(Uεg)(x) =
∫

g(Tωx)hε(ω) dω =
∫

g(T x−ω)hε(ω) dω =
∫

g(y)hε(T x − y) dy

from which it follows that qε(T x, y) = hε(T x − y).

APPENDIX: A Counterexample to Classical Fidelity

Here is a simple example of a systems not having classical fidelity (see
Definition 1). We consider the algebraic automorphisms TL of the torus X = T

2

defined by

TL (x1, x2) = (x1 + x2, x1 + 2x2) mod1

where x = (x1, x2) is a point on the torus, and its perturbed map Tω(x) = T (x) +
ω mod1 and we compute for all ρ ∈ C1(X ):

ρω(n) =
∫

X
ρ(T n x)ρ

(
T n

ω x
)
dm(x)

where m denotes the normalized Lebesgue (Haar) measure over X . By using
the Fourier’ transform technique, denoting with k an element of Z

2 and finally
by posing 〈·, ·〉 the euclidean scalar product, we have: ρ(x) = ∑

k∈Z2 cke2iπ〈k,x〉

where ck are the Fourier coefficients of ρ. It easily follows that:

ρ(T n x) =
∑
k∈Z2

cke2iπ〈k,Ln x〉 and ρ
(
T n

ω x
) =

∑
k∈Z2

cke2iπ〈k,Ln x+∑n−1
j=0 L j ω〉

where L = (
1 1
1 2

)
. Then:

ρω(n) =
∑
k∈Z2

|ck |2e2iπ〈k,
∑n−1

j=0 L j ω〉 =
∑
k∈Z2

|ck |2e2iπ〈k,(I d−Ln )(I d−L)−1ω〉

We notice that ρω(n) is the value at the point (I d − T n
L )(I d − TL )−1ω mod1 of

the function with Fourier expansion:

g(x) =
∑
k∈Z2

|ck |2e2iπ〈k,x〉

But the operator (I d − TL )−1 has the matrix representation
(

1 −1

−1 0

)

and therefore it applies X onto itself. Moreover, by the ergodicity of TL , for
Lebesgue almost all ω ∈ Z

2, the orbit (I d − T n
L )ω, n ≥ 0, is dense in X . It follows

that ρω(n) cannot have any limit unless ρ is constant everywhere.



1090 Liverani, Marie and Vaienti

Sharpness of the bounds

We conclude by showing that the bound α = 1 is sharp: in general one cannot
expect any decay of the fidelity before the time predicted by the α = 1 bound. We
consider again a toral automorphism and assume qε(x, y) = ε−2q(ε−1(x − y)),8

then µ0 = µε = m and we can compute
∫

qε(x, y) f (y) dy =
∑
k∈Z

2

fk

∫
T

2
qε(x, y)e2π i〈k,y〉dy =

∑
k∈Z

2

fk

∫
R

2
qε(x, y)e2π i〈k,y〉dy

=
∑
k∈Z

2

fk

∫
R

2
ε−2q(ε−1ξ )e2π i〈k,x−ξ〉dξ

=
∑
k∈Z

2

fke2π i〈k,x〉
∫

R
2

q(ξ )e−2π i〈εk,ξ〉dξ =
∑
k∈Z

2

fke2π i〈k,x〉q̂(εk),

where q̂ is the Fourier transform of q: R
2 → R+. That is (Tε f )k = fL−1k q̂(εL−1k).

Using these facts we can compute Fε
c (n) to be

Fε
c (n) =

∑
k∈Z

2

n−1∏
i=0

|q̂(εLi k)|·|ck |2.

Now we can chose, for example, ρ(x) = e2π i〈(1,1),x〉 and q(x) = 1
2π

e−‖x‖2/2, hence

ck = δk,(1,1) and q̂(k) = e−2π2‖k‖2
. This means the following lower bound on the

Fidelity

|Fε
c (n) − |c0|2| ≥ e−Cε2λ2n

.

Since we have chosen an entire function the decay is super exponential, neverthe-
less it takes place only after a time n such that ελn ≥ 1. This corresponds exactly
to the behavior in which α = 1. It is then clear that one cannot hope for an α better
than one in the estimates of Sec. 3.
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8 Where by x − y we means that x and y are lifted on the universal cover of T
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2, then one
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